Antbear 1.00

Introduction

Antbear allows its users to solve various real-world machine learning (ML)
problems using genetic programming (GP). This can be an extremely useful
technique when the problem domain is poorly understood - particularly when
obtaining a gradient associated with the Error Metric is impossible. In addition,
unlike other techniques the model produced is in a human-readable format
whether it be in C, R or Python code. This can lend a business intuition into
what parameters are important and how these parameters interact with each
other.

It should be noted that GP is a computationally expensive process and so one
should be aware that although it can solve linear regression problems one should
really use a mathematical technique which will be much more efficient.

omm——
T
-

No No

Figure 1: Genetic Programming Flowchart

Genetic Programming

In artificial intelligence, genetic programming (GP) is a technique of evolving
programs. Initially a population with completely random genetic chomosomes
is created. Each individual then expresses these chromosomes as code which is
evaluated on a GPU. (In our case we use CUDA on NVidia cards)

After all the evaluations have been completed the best individuals in terms of
the Error Metric are selected for reproduction. The children have a combination
of their parents. The crossover operation involves swapping random parts of
selected pairs (parents) to produce new and different offspring that become
part of the new generation of programs. Mutation involves substitution of some
random part of a program with some other random part of a program. Some
programs not selected for reproduction are copied from the current generation to
the new generation. Typically, members of each new generation are on average
more fit than the members of the previous generation, and the best-of-generation
program is often better than the best-of-generation programs from previous
generations. Termination of the evolution usually occurs when some individual
program reaches a predefined proficiency or fitness level.

User Interface

Antbear 1.00

Project Data Settings Learn Help

D= B 8 # *x = A & ¢ e B ? ©® Code Infix V¥
v Data Code Last 5 Boost
No Data

¥ Best Fit Statistics

Best Fit Plot

Actual
MPredicted

45 50 55 75 80 85 90 95 100
Data Point

Figure 2: Main Window

Main Window

The main UI is split into three sections; the data and code section, the best fit
and statistics section and the status section.

Data and Code

The data window displays the data used for the current project. Please note
that it is not a substitute for a spreadsheet. It does not allow sorting or editing.
It functions as a way of sanity checking that the data is sensible and valid for
the purposes of training.

As training progresses the code windows will show the actual code for the best
program in the current population. The desired coding language can be selected
from the toolbar. At present the languages are Infix, C, R, Python and Latex.

Best Fit and Statistics

When the training is progressing the Best Fit chart will show how the predicted
outputs match the actual target. This can be usefully not only for getting
a feel of how training its progressing but can also catch whether the wrong
metric is being used for the problem. The statistics view shows how the error is

progressing with respect to generations. This is useful in determing whether the
model is likely to over or under fit the data especially when one select a holdout
portion of the data.

Status

All important messages are displayed in this window. Any major errors will
be shown hear along with important milestones in terms of progression. The
progress bar showns the amount of training performed together with an estimated
finish time for training.

Importing Data

Antbear expects data to be in CSV format only and all values must be in a
valid float32 format. No infinities or non-numeric characters. If one has invalid
entries please label them by using a large negative or positive number outside
the current normal range of valid entries and specify this as a label using the
NaN setting.

Population

Please note that it is critical that one starts with the default parameters for
an initial run on any new project. This will give a solid baseline that can be
optimized in an iterative fashion.

Aardvark 8.00
Project Data Settings Learn Help
0O = El # x = B & i ? @ Code Pythoi' ¥
¥ Data Code Last 5 Boost
0.000000 +
0.010000%np. tanh ((((data["Cabin"] + (1.000000 - data["Pcla)) + np.sin(data["Parch"])) * 2 ﬂ + np.sin(data["Parch"])) * 2.0 * 2.0)
0.010000%np. 1 + ((1.000000 - data["Cabi]) % 2.0 - data["Embarked! * * 2.0) * -1.000000) +
0.010000%np. . m o o 000000)/2.0 + datal class 1) - dat rch"]) - data["Cabin"]) -
0.010000*np. tanh((data["Embarked"] + (data["Embarked"] + (data[Cabin"] - data["Pclass"])) * 2.0 % 2.0) * 2.0 * 2.0 * 2.0 * 2.0) +
0.010000%np.tanh((data["Pclass"] - (data["Cabin"] / 2.0 - (data["Embarked"] - (data["Pclass"] - data["Cabin"] / 2.0 * 2.0)) * 2.0 * Z
0.010000%np.tanh((8.0 * 2.0 - popylation)+
0.010000%np.tanh(8.0 * (datal abin"]) / 2.0) % 2.0) +

Initial Population = -

¥ BESIEY statistics Standard Population
Tournament Size
Max Program Size
Min Program Size
Mutation
Crossover
Error Precision - St Actual
Worst Fitness MPredicted
Column Percentage
Row Percentage
Generations

1100 1200

Stopped

Optimized Error: 0.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 3: Population Dialog

Initial Population

The genetic information of an individual for the initial population is created
wholly at random. As such it might be wise to increase the size of the initial
population with respect to every other generation. This is especially true for
projects with a number of false minima.

Standard Population

The standard propulation relates to every generation other than the initial one.

Tournament Size

This determined the number of individuals that are in a mini tournament to see
which one gets to go forward to the main tournament proper. For instance a
value of 8 means that 8 individuals are created from the best individuals from
the previous generation. The best one in terms of average parental fit gets to go
into the main tournament whilst the others are discarded.

Minimum Program Size

The minimum size of an individual program. For example a a zeroth function
would count as 1 (An actual value such as 0,1,2 or x,y,z). A unary would count
as 2 (sin(x) one for the function and one for the parameter). A binary would
count as 3 (x<y one for the function and two for both parameters)

Maximum Program Size
The maximum size of each individual program. Note most programs will have a
size typically between the mimimum and the maximum values.

Mutation

The percentage chance that an indivudals genetic code will mutate. As with
genetics mutations in the real world this is usually a bad thing and so should be
a low value.

Crossover

The percentage chance that two parents will breed. A value of zero will ensure
that the initial population will live forever and any change will be due to
mutations. A value of 100 will ensure no parents last more than one generation.

Error Precision

A value of three indicates that all data values are rounded off to three deciaml
places.

Worst Fitness

A value of 6 indicates that the worst fitness of an error metric is truncated to one
million. Note that least squares with huge data values and targets will require
huge values in terms of this parameter to have any hope of converging. It is
recommended that if this still doesn’t work then it might be worth prescaling
your data prior to presenting it to Antbear.

Column Percentage

The percentage of columns used per generation

Row Percentage

The percentage of rows used per generation. Note that both Column Percentage
and Row Percentage can have a marked effect on reducing overfitting

Generations (Per Boost)

The total generations per Boost epoch.

Error Metrics

Aardvark 8.00
Project Data Settings Learn Help

D = B & # *x > B & -« = P> W ? ® Code PythaV
¥ Data Code Last 5 Boost

0.000000 +

0.010000%np.tanh((((data["Cabin"] + (1.000000 - data["Pclass"])) + np.sin(data["Parch"])) * 2.0 + np.sin(data["Parch"])) * 2.0 * 2.0)
0.010000%np.tanh((data["Pclass"] + ((1.000000 - datal"Cabin"1) % 2.0 - datal"Embarked"1) * 2.0 * 2.8) * -1.000000) +
0.010000%np.tanh((np.sin(data["Parch"]) -Metrics 1ss"]) - data["Parch"]) - data["Cabin"]) -
0.010000%np. tanh((data["Embarked"] + (dat MAE 2.0 x 2.0) * 2.0 ¥ 2.0 * 2.0 *x 2.0) +
0.010000%np. tanh((data["Pclass"] - (datal '] - data["Cabin"] / 2.0 * 2.0)) * 2.0 *

0.010000%np.tanh((8.0 * 2.0 - data["Cab MSE D) * -1.) +
0.010000*np.tanh(8.0 * (data["Eq\baPked" MSPE data["(_:abin"]) / 2.0) * %.0) +

v Best Fit Statistics MSLE

MAE (Tanh)

MSE (Tanh)

MSPE (Tanh)

MSLE (Tanh)

Log Loss

Logistic Regression (MAE) Actual

Logistic Regression (MSE) MPredicted
0 Tile Width
1 No Of Targets
0 No Of Hidden

1000 1100 1200

Stopped

Optimized Error: 0.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 4: Metrics Dialog

Mean Absolute Error

1 n
Error = - Z |pi — v
i=1

Mean Square Error

1 n
Error = — 7 —y?
" ;:1 bi —Y;

Mean Square Percentage Error

1 <&)2
Error = — Z 7(% 2%)
i Yi

Mean Square Log Error

n

1
Error = — E (log(1 + p;) — log(1 +1;))> Note: y C RT
n
i=1

Mean Absolute Error (Tanh)
Individual boost outputs are wrapped inside a tanh function

1 n
Error = - Z lpi — il
i—1

Mean Square Error (Tanh)

Individual boost outputs are wrapped inside a tanh function

1 n
Error = — 2 —y?
” ;:1 pi — Y

Mean Square Percentage Error (Tanh)

Individual boost outputs are wrapped inside a tanh function

n

1 i —yi)®
Error = — E (1)7211) Note: y ¢ R
n 4 Y;
i=1 z

Mean Square Log Error (Tanh)

Individual boost outputs are wrapped inside a tanh function

n

1
Error = — E (log(1 + p;) — log(1 +4;))*> Note: y C RT
n
i=1

Log Loss Error

n

1
Error = —= E —yilog(z;) + (1 — yi)log(1 —x;) Note: Yy € (0,1)
n
i=1

Raw output is wrapped inside a sigmoid function which is omitted for clarity

Logistic Regression Error (MAE)
1 n
Error = - Z; lpi —yi| Note: Vy € (0,1)
1=
Raw output is wrapped inside a sigmoid function which is omitted for clarity
Logistic Regression Error (MSE)
1 n
Error = — pr —y? Note: Yy € (0,1)
n
i=1
Raw output is wrapped inside a sigmoid function which is omitted for clarity

Tile Width

This is an experimental feature for Images and assumes that the data represent
a monochome square image. A tile value of 4 represents a 4 by 4 tile in a similar
fashion to thos used for convolutions. A tile with of zero disable this feature.

Number of Targets
The number of target classes for training. Typically this would mainly be used
with logloss and the softmax option for multiclass classification.

Number of Hidden

It can be worth using an abstraction layer and using the output parameters
from this layer to create the predictions. It can also be be used to produced an
N-dimension cluster associated with the targets. An example of this clustering
technique is given in the tutorials section.

Aardvark 8.00
Project Data Settings Learn Help
ox = B @ - > B ? ® Code PythaV
Data Code Last 5 Boost
.000000 +
.010000*np.tanh((((data["Cabin"] + (1.000000 - data["Pclass"])) + np.sin(data["Parch"])) * 2.8 + np.sin(data["Parch"])) * 2.0 * 2.0)
.010000xnp. tanh((data["Pclass"] + ((1.000000 - data["Cabin"]) * 2.0 - data["Embarked"]) * 2.0 * 2.0) * -1.000000) +
.010000%np. tanh((np.sin(data["Parch"]) - (((((data["Pclass"] + 000000)/2.0 + data["Pclass"]) - data["Parch"]) - data["Cabin"]) -
.010000%np. tanh((data["Embarked"] + (data["Embarked"] + (data in"] - data["Pclass"])) * 2.0 % 2.8) % 2.0 * 2.0 * 2.0 * 2.0) +
.010000%np. tanh((data["Pclass"] - (dat: bin"] / 2.0 - (data["Embarked"] - (data["Pclass"] - data["Cabin"] / 2.0 * 2.8)) * 2.0 *
.010000%np.tanh((8.0 % 2.0 - data["C n"] % ((data["Fare"] + -1.000000)/2.0 + -1.000000)) * -1.) +
.010000%np.tanh(8.0 * (data["Elpbal‘ked Functions ["(;abin"]) / 2.0) * g.ﬂ) +
Best Fit Statistics Zeroth Unary Binary
0] 1 2 3
= = -3 e
2/e] wn(2) logl0(e) n(10)
1og10(2) sqrt(2) sqrt(3) pi
1/pi 2/pi pi/2 pi squared

pi cubed omega euler olden
9 9 Actual

catalan apery khinsin glaisher MPredicted

mertens

Use Complex O

el winla} = 1100 1200
Data Point

Stopped
Optimized Error: ©.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 5: Functions Dialog

Functions

The functions are split into 3 sections depending on their contribution to overall
program size. As with other settings it is advised to start a new project with the
defaults as complexity can cause both overfitting and make it harder to interpret
the best models.

Zeroth Function

The standard predefined constants that can be used by Antbear.

Unary Function

The unary functions such as sin, cos, tanh that are available for use by individual
programs.

Binary Function

The binary function such as less or greater than available from Antbear.

Use Complex

Complex math is used if this option is selected.

NaN

The value that represents any unknown or undefined value. A value of zero
means that this feature is turned off.

Hardware
The displays of all available GPUs. One can select which GPU one wishes.

Aardvark 8.00
Project Data Settings Learn Help
D = e # *x = B . > B ? ® Code PythaV
¥ Data Code Last 5 Boost

0.000000 +

0.010000#np. tanh ((((data["Cabin"] + (1.600000 - data["Pclass"])) + np.sin(datal"Parch"])) * 2.0 + np.sin(data["Parch"])) * 2.0 * 2.0)
0.010000%np.tanh((data["Pclass"] + ((1.000000 - data["Cabin"]) * 2.0 - data["Embarked"]) * 2.0 * 2.8) * -1.000000) +

0.010000%np. tanh((np.sin(data["Parch"]) - (1.000000)/2.0 + data["Pclass"]) - data["Parch"]) - data["Cabin"]) -
0.010000%np. tanh((data["Embarked"] + (data[" Cabin"] - data["Pclass"])) * 2.0 % 2.0) % 2.0 * 2. 0 * 2.0) +
0.010000%np. tanh((data["Pclass"] - (data["Cabin"] / 2.0 - (data["Embarked"] - (data["Pclass"] - data["Cabin"] / 2. 0)) * 2.0 * :
0.010000%np.tanh((8.0 * 2.0 - data["Cabin"] * ((data["Fare"] + -1.000000)/2.6 + -1.000000)) * -1.) +

0.010000%np.tanh(8.0 * (da mbarked"] + 8.0 x ((data["Embarked"] - data["Pclass"]) + data["Cabin"]) / 2.8) * 2.8) +

0 % 2.
0 % 2.

v Best Fit Statistics
Best Fit Plot
Hardware
GPU #1 NVIDIA TITAN Xp
GPU #2 NVIDIA TITAN Xp

v x
Actual
MPredicted

600 700 1000 1100 1200
Data Point

Stopped

Optimized Error: 0.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 6: Hardware Dialog

10

Dummy Values

Although Antbear provided a significant number of constants in the functions
settings one can add more simply by using random values created here or by
editing these dummy values if one wishes to have specific numbers.

Aardvark 8.00
Project Data Settings Learn Help
D m B 8 i % = @ & - > B ? ® Code PythaV
¥ Data Code Last 5 Boost

0.000000 +
0.010000#np. tanh((((data["Cabin"] + (1.000000 - data["Pclass"])) + np.sin(data["Parch"])) * 2.8 + np.sin(data["Parch"])) * 2.0 * 2.08)
0.010000#np. tanh((data["Pclass"] + ((1.000000 - data["Cabin"]) * 2.0 - data["Embarked"]) * 2.0 % 2.0) * -1.000000) +

0.010000%np. tanh((np.sin(data["Parch"]) - (((((datal"Pclass"] + -1.000000)/2.0 + datal"Pclass"]) - data["Parch"]) - data["Cabin"]) -
0.010000%np. tanh((data["Embarked"] + (diDummy Values .0 % 2.0) *x 2.0 x 2.0 * 2.0 * 2.0) +
0.010000#np. tanh((data["Pclass"] - (dat - data["Cabin"] / 2.0 % 2.0)) % 2.0 * :
0.010000%np.tanh((8.0 * 2.0 - data["Ci *

0.010000%np. tanh(8.0 * (data["Embarke ¥ © . bin"1) / 2.0) * 2.0) +

Position

v Best Fit Statistics

#
#
#
#

Actual
MPredicted

1100 1200

Stopped

Optimized Error: 0.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 7: Dummies Dialog

11

Features

For wide datasets in terms of rows < columns it may be worth turning on
features which will train on a subset of parameters based on their Pearson
correlation or mutual information (MI) with the target.

Pearson

All parameters have their pearson correlations calculated and the best parameters
are selected.

MI

All parameters have their mutual information (MI) calculated and the best
parameters are selected.

Bins

In order to speed up performance MI will put the data for each parameter in
the specified number of bins prior to performing the calculation.
Note for massive data sets this can be both slow and unnecessary

Aardvark 8.00
Project Data Settings Learn Help
D= B 8 # %x = B & - > B ? @ Code PythaV
¥ Data Code Last 5 Boost
0.000000 +
0.010000%np. tanh ((((data["Cabin"] + (1.000000 - data["Pclass"])) + np.sin(data["Parch"])) * 2.0 + np.sin(data["Parch"])) * 2.0 * 2.0)
0.010000%np. tanh((data["Pclass"] + ((1.000000 - data["Cabin"]) * 2.0 - data["Embarked"]) * 2.0 * 2.8) * -1.000000) +
0.010000%np. tanh((np. ata["Parch"]) - (((((data["Pclass"] 0000)/2.0 + data["Pclass"]) - data["Parch"]) - data["Cabin"]) -
0.010000%np. "] + (data["Embarked"] + (data in"] - data["Pclass"])) * 2.0 * 2.0) % 2.0 * 2.0 *x 2.0 x 2.0) +
0.010000*np . "Cabin"] / 2.0 - (data["Embarked"] - (data["Pclass"] - data["Cabin"] / 2.0 * 2.0)) * 2.0 * Z

0.010000%np.tanh((8.0 * 2.0 - data["Cabin"] * ((data["Fare"] + -1.000000)/2.0 + -1.000000)) * -1.) +
0.010000%np.tanh(8.0 * (data["E@harked"] + 8.0 * ((ﬂaga["EmnaPkeg"] = data['chlass”]) + data[”@abin"]) (2.0) * 240) +

¥ Best Fit Statistics
Best Fit Plot
Features

Pearson

2
Actual
MPredicted

600 700 1000 1100 1200
Data Point

Stopped

Optimized Error: 0.664277

Generation Complete: 255

Generation: 255 Best Fit: 0.664277 Average Fit: 0.66541 Worst Fit: 0.66741
Good Progams: 256 Bad Programs: 0

Generation Started: 255

ETA: Fri Jul 22 15:09:41 2022

Figure 8: Features Dialog

12

Tutorials

It is highly recommended that one studies and plays with these examples in
order to get a feel for Antbear’s capabilities and performance. Note all tutorial
data and scripts can be found in /usr/share/antbear/tutorials

Originals and many more besides can be found at the IC Irving ML Repository

Titanic

The Titanic data shows various parameters associated with passengers. The idea
here is to predict who survived and who dies and then view the code to see what
parameters are useful and which ones are irrelevant.

1. Create a new project
2. Import the Titanic Data
e The Data View should be populated with PClass, Sex etc.
Change the Metric to LogLoss
Press Start
Compare the boost python code with that found in the tutorials directory
Reduce the learning rate to 0.1 and repeat. Does it improve performance?
Experiment!

N ot w

Iris Clustering

The Iris flower data set is a multivariate data set introduced by the British
statistician and biologist Ronald Fisher in his 1936 paper. The idea here is to
produce a 2 dimensional clustering program to display iris information.

1. Create a new project
2. Import the Iris Data
e The Data View should be populated with Sepal_Length, Petal width
etc.
Leave the Metric to Least Squares but change Hidden to 2.
Press Start
Compare the boost python code with that found in the tutorials directory
Reduce the learning rate to 0.1 and repeat. Does it improve performance?
Experiment!

N Ot w

13

https://archive.ics.uci.edu/ml/index.php

Wine

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of wines.

1. Create a new project
2. Import the Wine Data
e The Data View should be populated with fixed acidity,volatile acidity
etc. ete.
Leave the Metric to Least Squares.
Press Start
Compare the boost python code with that found in the tutorials directory
Reduce the learning rate to 0.1 and repeat. Does it improve performance?
Experiment!

N otk w

14

End User License Agreement (EULA)
Non-commercial use end-user license agreement for Antbear 1.00

By installing, copying or otherwise using Antbear 1.00, you agree to be bound
by the terms of the Non-Commercial-Use End User License Agreement (EULA).
If you do not agree with the terms of this EULA, you may not use or copy the
software product.

NON-COMMERCIAL USE

This EULA intends to make it easy for developers and end users to use Antbear
1.00 for Non-Commercial Purposes, where “Non-Commercial Purposes” means:
To evaluate Antbear 1.00 and to do exploratory or educational development
and “proof of concept” prototyping of software applications, whether at home
for personal use or at work as a prototyping tool, and where “Non-Commercial
Purposes” specifically excludes development of a system to be used for commercial
gain, whether to be sold or to be used within a company, partnership, organization
or entity that transacts commercial business.

GRANT OF LICENSE

This EULA grants you the following non-exclusive rights: Software: You may
use the Antbear 1.00 on any number of computers, either standalone, or on a
network, so long as every use of the Antbear 1.00 is for NON-COMMERCIAL
USE. Unless expressly permitted under this EULA, you will not: Alter, remove,
hide or cover proprietary notices in or on Antbear 1.00. Decompile, disassemble
or otherwise attempt or assist others to reverse engineer Antbear 1.00. Use
the Antbear 1.00 in any application that is intended to create or could, in the
event of malfunction or failure, cause serious personal injury or property damage.
Make use of the Antbear 1.00 for commercial gain, whether directly, indirectly
or incidentally.

LIABILITY

This software is provided “as is” and any express or implied warranties, including,
but not limited to, the implied warranties of merchantability and fitness for a
particular purpose are disclaimed. in no event shall karl yoxall or kryoxall Ltd. be
liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.

15

3RD PARTY LICENCES

Links to all 3rd party licenses are shown below:
Dear IMGUI

ImPlot

ImGuiFileDialog

NerdFonts

16

https://github.com/ocornut/imgui/blob/master/LICENSE.txt
https://github.com/epezent/implot/blob/master/LICENSE
https://github.com/ocornut/imgui/blob/master/LICENSE.txt
https://github.com/ryanoasis/nerd-fonts/blob/master/LICENSE

	Antbear 1.00
	Introduction
	Genetic Programming
	User Interface
	Main Window
	Data and Code
	Best Fit and Statistics
	Status

	Importing Data
	Population
	Initial Population
	Standard Population
	Tournament Size
	Minimum Program Size
	Maximum Program Size
	Mutation
	Crossover
	Error Precision
	Worst Fitness
	Column Percentage
	Row Percentage
	Generations (Per Boost)

	Error Metrics
	Mean Absolute Error
	Mean Square Error
	Mean Square Percentage Error
	Mean Square Log Error
	Mean Absolute Error (Tanh)
	Mean Square Error (Tanh)
	Mean Square Percentage Error (Tanh)
	Mean Square Log Error (Tanh)
	Log Loss Error
	Logistic Regression Error (MAE)
	Logistic Regression Error (MSE)
	Tile Width
	Number of Targets
	Number of Hidden

	Functions
	Zeroth Function
	Unary Function
	Binary Function
	Use Complex
	NaN

	Hardware
	Dummy Values

	Features
	Pearson
	MI
	Bins

	Tutorials
	Titanic
	Iris Clustering
	Wine

	End User License Agreement (EULA)
	Non-commercial use end-user license agreement for Antbear 1.00
	NON-COMMERCIAL USE
	GRANT OF LICENSE
	LIABILITY
	3RD PARTY LICENCES

